If it's not what You are looking for type in the equation solver your own equation and let us solve it.
45x^2-10x=0
a = 45; b = -10; c = 0;
Δ = b2-4ac
Δ = -102-4·45·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-10}{2*45}=\frac{0}{90} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+10}{2*45}=\frac{20}{90} =2/9 $
| 5(2x+1)=7x-4 | | (X)=-4x(12x^2-5x-11) | | ((1/27)^(x+1/3))=9 | | (1/27)^(x+1/3)=9 | | y=(200000*1.03)7 | | y=(200000*1.03)8 | | x=22-0.5x | | 210=x+.2x | | 2x+4+3=4 | | 197.82=2(3.14)x | | 2(u+3)=14 | | X+2+3(x+2)=4 | | X+2+3(x+2)=2 | | w+5.9=9.29 | | 4/36=x/18 | | 10t=400+10t^2 | | 10t=400+10t | | (2x+10)+(5x+30)=180 | | 3x+(-20)=180 | | x-3-x4=5 | | 5x-9=7x-16 | | -2(3x-5)=3-5x | | -23x-5=3-5x | | 9x+19+62=180 | | (-5y+4)=(-8y-14) | | 4x+6=3x+8= | | 15=x8.25 | | 42+13+77+8x=180 | | 2-5x4=+7 | | 3.5r=70 | | (95x-0.5^2)-(55x+30)=50 | | Y=0.2x=-4 |